

Shooter-A

Kensuke HIROSHIMA, Yasuhiro HINOKI

Concept

Simple and Light

Figure

fig. 1. Front

Specifications

Length	1,050 mm		
Height	360 mm		
Span	1,280 mm	Speed	5.0 m/sec
Weight	245 g	Turning Radius	5.0 m
Wing area	38.4 dm	Payload	150g over
Motor	COBRA 2203/46 17.5g		
Motor controlle	ntroller HiModel 10A ESC 9.5g		
Elevator servo	Elevator servo New Power XLD-4.5 4.7g Speed 0.10 sec/60deg Torque 0.65 kg·cm		g Torque 0.65 kg.cm
Rudder servo	New Power XLD-4.5 4.7g Spe	ed 0.10 sec/60de	g Torque 0.65 kg.cm
Buttery	Hyperion G3 2S 240mAh 25C 16.8g		

Folding wing system

Conpact and Easy carrying

fig. 3. Folding wing system (Left: Usually, Right: Folding)

How to build

Build

As shown in the figure 5, the wing is reinforced by carbon since the strength is not enough to fly. We glue carbon to not only the side of the wing but the inside of the wing diagonally. This results torsional stiffness of the wing is higher.

The main wing and the nose material are EPP, and others are depron. Carbons of thickness 1[mm] which used for reinforcement are formed like truss as shown in the figure 6.

Except carbon is cut using a raser cutter. Finally, we glue side wing to main wing, and mount

a servo, microcontroller and others to this.

fig. 5. Wing

fig. 6. Structure

fig. 7. Mount

Design

We assume that begginers pilot robotic plane in the general gymnasium of 20x40x8[m]. We aim to ensure 5[m/sec] speed and 5[m] turning radius so that they can pilot it safely.

Furthermore we adopt rudder plane since the weight becomes lighter and motion performance is not important in our case.

We adopt rectangular wing. Because the structure is simple, in addition production time is shorter.

In order to steady roll action and to turn easily, both right wing and left wing are angled about 26[deg] dihedral angle from horizontal center

wing. We adopt expanded polypropylene (EPP) for wing. This results from light weight, easy repair and

absorbing shock.

Computer system

PID Controller

We adopt PID Controller with Ardupilot Mega, unmanned aircraft microcomputer based on Arduino Mega 2560, and Adafruit 10DOF, 10 axis sensor including gyro, acceleration, magnetic, and atmospheric pressure.

Safety

Strong and Soft

fig. 12. EPP

The body is almost composed of carbon and expanded polypropylene (EPP).

The later is strong for a shock, so the body's damage would be little if it crashed.

In addition, this is very soft as shown in the figure 12. If this collided with people, they wouldn't have a serious damage.

	ng. /. wiou
Drop system	
Slide carbon using single servo to drop relief	supplies

Automatic control

category

Endo Katsuhiro, (auto landing sys) Okutani Ryosuke, (dropping unit) Sekiguchi Hiromu, (control unit) Toyoda Akihiro, (main wing) Matsuda Masayoshi (body and tail wing)

Keio University

Main wing

1. High strength, low weight ... Made of EPS supported by styrene paper tape

2. Prominent resiliency

... dihedral effect of the wing

3. High stability ... huge wing area, original effective airfoil

Concept and Design

1. Easy to FLY ... very slow flight and high stability

2. Easy to CARRY ...dismantles easily in small 5 components.

3. Easy to REMODEL ...using a standard mount allows us partial remodeling especially around tail wings

Drafting

hand writing

Materials

EPS, styrene paper reinforced by tapes and carbon fiber rod

Fabrication

body: cutter and scissors dropping unit : laser cutter main wing : Hot wire cutter

assemble

Control Unit

Everyone can maneuver Nila easily

...It realizes arbitrary attitude command given by a pilot.

auto landing system

10

15 t[s]

20

25

... The system estimates 3D position of the plane using IR LED on the plane and IR stereo camera on the ground

30

0

10

15 t[s]

For safety

- EPS wings absorb shock.
- All parts are planed off the corners.

Dropping Unit

- 1. Weight saving
- ... Made many lightening holes
- 2. Size saving
- ...Adopt the simplest mechanism
- 3. Reliable operation ... Made sturdy and precisely

4. Easy to set

...

30

Tokyo Metropolitan University

-Aerospace System Operation Engineering Office-

GOSAM

CONCEPT

With combination of balsa and Japanese cypress (hinoki), we realize not only strength but also lightweight easily.

DESIGN METHOD

- ➤ GOSAM can fly slowly by using 'slow fly' propeller. (propeller: 8×3.8SF)
- > GOSAM has space between wing and the backbone by arch-shaped wing to load her brain, Arduino.
- Outer arch-shaped wing, GOSAM has a wing with dihedral angle and can get roll stability.
- > 3ch control: throttle, rudder, elevator.

FABRICATION METHOD

 Wrapping the wing with domestic cellophane, so we can get it anywhere easily and inexpensively.

Fig. Under the wing

> The balsa is very lightweight material, but is weak at a shock.

We attached the support material to adherence part, and only glued the balsa, not nailing.

FAILSAFE

- > By setting throttle upper limit, if you mistake throttle operation, GOSAM won't fly out of control.
- If the receiver can't get normal radio because of noise or interference, it automatically gets throttle off and prevents out of control.

	-		
Width	770 mm	Weight	$245.5~{\rm g}$
Length	900 mm	Wing Area	26.24 dm ²
Height	268 mm	Wing Load	9.36 g/dm^2

Tab. Aircraft Specifications

The airfoil is based off of the Benedek B6356b

that is commonly used for hand launch gliders.

By making the wings thin, we managed

to reduce weight and air resistance.

Airfoil

dm²

g

For the dropping system, we used one servo for

each drop object, and improved the accuracy

of the movement and reduce the weight of the system.

Length mm Wing area Span mm Empty Weight

NF, Toyota College

AMATSUBAME

FLAT TURN

TURNING WITHOUT BANKING

Length × Width × Height	860×1100×250 mm	
Wing Area	29 dm ²	
Empty Weight	246 g	
Wing Loading	8.5 g/dm ²	
Control Surfaces	Rudder, Elevator, Ailerons	

あまつばめ

AVIONICS

AUTOPILOT

8 AROUND PYLONS

The airplane can quickly change heading by rudder.

DROPPING

TRANSPORT

QUICK DISASSEMBLY

The fuselage and wing can be easily disassembled

SAFETY

EPP

(Expanded Polypropylene)

The body frame and wing are made of soft plastic foam material that will absorb the impact.

DEN-NO HIKO 2015 (Autopilot) Sugano Yusuke, Shibata Mitomu, Tajima Yuichi

Concept 1) High Gliding Capacity 2) High Strength 3) Excellent Serviceability

Ch6

Low

High

How to design

stimate weight and velocity

Determine wing area

Determine parameter of a tail wing

How to make

We use parts stuck EPP with Carbon

sheet for strength and light.

Arced main wing

Dihedral of the main wing has multistage. It being approximately represented as Arced main wing.

The following table shows specification about main wing of multistage dihedral.

Spec

Weight:246[g] Length:1180[mm] Span:1500[mm]

Safety

The load are built in the body so as not to scatter them.

Equivalent dihedral: 7[deg]

Automatic control system

The attitude angle and the altitude of aircraft are estimated with four sensors: Compass, Accelerometer, Gyro and barometric altitude.

Concept

"Firestar" has both strength and lightness. We can fly it easily by both manual operation and automatic control.

Flap

By using fowler flap, we get our plane have more capability to load and fly more slowly. When we make flap, we succeed in keeping durability by using original cutting method.

Design method

We use 3D-CAD to design aircraft accurately. We achieve making aircraft in short term by making wing and body separately. By using genetic algorithm, we make original wing.

Product method

Body is made of carbon. Wing is made

Auto-pilot system

Original automatic control board "SkipperS" became smaller and lighter than last year. It equips gyro, acceleration, compass, atmosphere censor. We used mbed and reduced term of developing.

by cutting mass of styrene foam. Motor mount and some parts are made by using 3D printer.

Safety

We decrease the impact of collision by weight saving, and also we lower the possibility of injury by doing away with sharp parts.

specification Length 930 mm 1180 mm Width Height 175 mm Weight 143.4 g 28.45 dm^2 Wing Area 5.63 g/dm^2 Wing Load

Team crew

Fukaya Temma, Yoshioka Yuma, Sugawara Takuto, Kurosawa Michito, Saito Shogo Advisor

Konda Yoshinori, Masamitsu Wakoh

Although Weight is not everything, we removed 20 grams anyway. Lightness brings best performance.

Pliable structure brings distortion. Rigid structure may hurt a person,

Quick movement brings safety. However, restive horse may lose control,

So we improved assembling method.

So we improved controllability.

Software and hardware made for each other. Necessary minimum number of sensors simplify Autopilot. Two microcomputers share work of Autopilot and Autoland.

National Institute of Technology, Akita College

Kanazawa Institute of Technology DreamLab UAV Project

EAGLE12

Team members : Tomoki Kawanaka ,Takuya Kataoka Hiromu Takatsuka , Takayuki Nagawara Fumiya Taga

Concept

Stabilize flight and Achieve All missions

Flight Control Unit

- Enough processing speed to carry out all missions
- Adding optional equipment for auto landing
 - Communicate Auto Landing System, Receive signals
 - \rightarrow To Separate Guidance Signal from Disturbance.

Design Carry Heavy FCU & HEAVY Payload

Increasing wing area
Increasing Wingspan
× Spar distortion decrease stability

CFRP Spar To Prevent Wing distortion

- Optimum Airfoil
 - Optimum Glide time
 - To Achieve Enough Stability for Pilot

